首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Weakly supervised structured output learning for semantic segmentation
【24h】

Weakly supervised structured output learning for semantic segmentation

机译:弱监督的结构化输出学习,用于语义分割

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of weakly supervised semantic segmentation. The training images are labeled only by the classes they contain, not by their location in the image. On test images instead, the method must predict a class label for every pixel. Our goal is to enable segmentation algorithms to use multiple visual cues in this weakly supervised setting, analogous to what is achieved by fully supervised methods. However, it is difficult to assess the relative usefulness of different visual cues from weakly supervised training data. We define a parametric family of structured models, were each model weights visual cues in a different way. We propose a Maximum Expected Agreement model selection principle that evaluates the quality of a model from the family without looking at superpixel labels. Searching for the best model is a hard optimization problem, which has no analytic gradient and multiple local optima. We cast it as a Bayesian optimization problem and propose an algorithm based on Gaussian processes to efficiently solve it. Our second contribution is an Extremely Randomized Hashing Forest that represents diverse superpixel features as a sparse binary vector. It enables using appearance models of visual classes that are fast at training and testing and yet accurate. Experiments on the SIFT-flow dataset show a significant improvement over previous weakly supervised methods and even over some fully supervised methods.
机译:我们解决了弱监督语义分割的问题。训练图像仅按其包含的类标记,而不按其在图像中的位置标记。相反,在测试图像上,该方法必须预测每个像素的类标签。我们的目标是使分割算法能够在这种弱监督的环境中使用多种视觉提示,类似于通过完全监督的方法所实现的。但是,很难从弱监督的训练数据中评估不同视觉提示的相对有用性。我们定义了一个结构化模型的参数族,每个模型以不同的方式加权视觉提示。我们提出了“最大预期协议”模型选择原则,该原则无需评估超像素标签就可以评估家族模型的质量。搜索最佳模型是一个困难的优化问题,它没有解析梯度和多个局部最优。我们将其转换为贝叶斯优化问题,并提出了一种基于高斯过程的算法来有效地解决它。我们的第二个贡献是一个极端随机的哈希森林,该森林以稀疏的二进制向量表示各种超像素特征。它可以使用视觉类的外观模型,这些模型的训练和测试速度很快,但准确无误。 SIFT流量数据集上的实验表明,与以前的弱监督方法甚至某些完全监督的方法相比,有了显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号