首页> 外文会议>Computer science logic >Towards a Canonical Classical Natural Deduction System
【24h】

Towards a Canonical Classical Natural Deduction System

机译:走向经典的经典自然演绎系统

获取原文
获取原文并翻译 | 示例

摘要

This paper studies a new classical natural deduction system, presented as a typed calculus named λμlet. It is designed to be iso-morphic to Curien-Herbelin's λμμ-calculus, both at the level of proofs and reduction, and the isomorphism is based on the correct correspondence between cut (resp. left-introduction) in sequent calculus, and substitution (resp. elimination) in natural deduction. It is a combination of Parigot's λμ-calculus with the idea of "coercion calculus" due to Cervesato-Pfenning, accommodating let-expressions in a surprising way: they expand Parigot's syntactic class of named terms. This calculus aims to be the simultaneous answer to three problems. The first problem is the lack of a canonical natural deduction system for classical logic. λμlet is not yet another classical calculus, but rather a canonical reflection in natural deduction of the impeccable treatment of classical logic by sequent calculus. The second problem is the lack of a formalization of the usual semantics of A/x/i-calculus, that explains co-terms and cuts as, respectively, contexts and hole-filling instructions. The mentioned isomorphism is the required formalization, based on the precise notions of context and hole-expression offered by λμlet. The third problem is the lack of a robust process of "read-back" into natural deduction syntax of calculi in the sequent calculus format, that affects mainly the recent proof-theoretic efforts of derivation of λ-calculi for call-by-value. An isomorphic counterpart to the Q-subsystem of λμμ-calculus is derived, obtaining a new λ-calculus for call-by-value, combining control and let-expressions.
机译:本文研究了一种新的经典自然演绎系统,它以类型为​​λμlet的演算形式呈现。它被设计为在证明和归约水平上均与Curien-Herbelin的λμμ演算同构,并且同构是基于后续演算中的切入(分别为左引入)和替换(消除)。它是Parigot的λμ演算与Cervesato-Pfenning提出的“强制演算”的组合,以令人惊讶的方式容纳let表达式:它们扩展了Parigot命名术语的句法类别。该演算旨在同时回答三个问题。第一个问题是缺乏经典逻辑的规范自然演绎系统。 λμlet不再是另一种经典的演算,而是自然演绎的自然演绎,以演绎后续演算对经典逻辑的无懈可击的处理。第二个问题是缺乏对A / x / i演算的常用语义的形式化,该形式分别将辅助词和剪切解释为上下文和空洞指令。根据λμlet提供的上下文和空洞表达的精确概念,上述同构是必需的形式化。第三个问题是缺乏一种可靠的“回读”成后续演算格式的演算自然演绎语法的过程,这主要影响到最近为推算按值推导λ演算的证明理论。推导了λμμ演算的Q子系统的同构对应物,获得了新的λ演算,用于按值调用,将控制和let表达式结合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号