首页> 外文会议>Computer science and its applications >Comparison of Automatic Seed Generation Methods for Breast Tumor Detection Using Region Growing Technique
【24h】

Comparison of Automatic Seed Generation Methods for Breast Tumor Detection Using Region Growing Technique

机译:区域生长技术用于乳腺癌检测的自动种子生成方法比较

获取原文
获取原文并翻译 | 示例

摘要

Seeded Region Growing algorithm is observed to be successfully implemented as a segmentation technique of medical images. This algorithm starts by selecting a seed point and, growing seed area through the exploitation of the fact that pixels which are close to each other have similar features. To improve the accuracy and effectiveness of region growing segmentation, some works tend to automate seed selection step. In this paper, we present a comparative study of two automatic seed selection methods for breast tumor detection using seeded region growing segmentation. The first method is based on thresholding technique and the second method is based on features similarity. Each method is applied on two modalities of breast digital images. Our results show that seed selection method based on thresholding technique is better than seed selection method based on features similarity.
机译:观察到种子区域增长算法已成功实现为医学图像分割技术。该算法首先选择种子点,然后利用彼此靠近的像素具有相似特征的事实来增加种子面积。为了提高区域生长分割的准确性和有效性,一些工作倾向于使种子选择步骤自动化。在本文中,我们对两种使用种子区域生长分割法进行乳腺肿瘤检测的自动种子选择方法进行了比较研究。第一种方法基于阈值技术,第二种方法基于特征相似性。每种方法都应用于两种形式的乳房数字图像。结果表明,基于阈值技术的种子选择方法优于基于特征相似度的种子选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号