首页> 外文会议>Computer Modelling and Simulation, 2009. UKSIM '09 >A Score Based Method for Controlling the Convergence Behavior of Particle Swarm Optimization
【24h】

A Score Based Method for Controlling the Convergence Behavior of Particle Swarm Optimization

机译:基于分数的粒子群算法收敛性控制方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, Particle Swarm Optimization (PSO) has been used in data mining, feature extraction and other optimization based applications. Time to time, a number of researchers have suggested modifications to the basic PSO. Although this optimization technique finds good solutions much faster than the traditional and evolutionary algorithms, they suffer from a major drawback of premature convergence. In addition, it has been found experimentally that the quality of the solutions does not improve as the number of iterations is increased. In this paper we discuss the reason behind the premature convergence. We present a new method based on performance-scoring for improving the algorithm The scoring based model is applied to the basic and some of the modified versions of PSO models.
机译:近年来,粒子群优化(PSO)已用于数据挖掘,特征提取和其他基于优化的应用程序。有时,许多研究人员建议对基本PSO进行修改。尽管此优化技术找到的解决方案比传统算法和进化算法快得多,但它们仍存在过早收敛的主要缺点。另外,通过实验发现,随着迭代次数的增加,解决方案的质量并没有提高。在本文中,我们讨论了过早收敛的原因。我们提出了一种基于性能评分的改进算法的新方法。基于评分的模型被应用于PSO模型的基本版本和部分修改版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号