首页> 外文会议>Computer Modelling and Simulation, 2009. UKSIM '09 >An Enhanced Fuzzy-Genetic Algorithm to Solve Satisfiability Problems
【24h】

An Enhanced Fuzzy-Genetic Algorithm to Solve Satisfiability Problems

机译:求解满意度问题的改进模糊遗传算法

获取原文

摘要

The satisfiability is a decision problem that belongs to NP-complete class and has significant applications in various areas of computer science. Several works have proposed high-performance algorithms and solvers to explore the space of variables and look for satisfying assignments. Pedrycz, Succi and Shai (2002) have studied a fuzzy-genetic approach which demonstrates that a formula of variables can be satisfiable by assigning Boolean variables to partial true values between 0 and 1. In this paper we improve this approach by proposing an improved fuzzy-genetic algorithm to avoid undesired convergence of variables to 0.5. The algorithm includes a repairing function that eliminates the recursion and maintains a reasonable computational convergence and adaptable population generation.Implementation and experimental results demonstrate the enhancement of solving satisfiability problems.
机译:可满足性是一个决策问题,属于NP-完全类,在计算机科学的各个领域都有重要的应用。一些作品提出了高性能算法和求解器,以探索变量的空间并寻找令人满意的分配。 Pedrycz,Succi和Shai(2002)研究了一种模糊遗传方法,该方法表明可以通过将布尔变量分配给0到1之间的部分真实值来满足变量公式。在本文中,我们通过提出一种改进的模糊算法来改进这种方法-遗传算法可避免变量意外收敛到0.5。该算法具有修复功能,消除了递归并保持了合理的计算收敛性和可适应的种群生成。实施和实验结果表明,解决了可满足性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号