首页> 外文会议>Computer analysis of images and patterns. >MCMC-Based Algorithm to Adjust Scale Bias in Large Series of Electron Microscopical Ultrathin Sections
【24h】

MCMC-Based Algorithm to Adjust Scale Bias in Large Series of Electron Microscopical Ultrathin Sections

机译:基于MCMC的电子显微超薄切片大系列中的比例偏差调整算法

获取原文
获取原文并翻译 | 示例

摘要

When using a non-rigid registration scheme, it is possible that bias is introduced during the registration process of consecutive sections. This bias can accumulate when large series of sections arc; to be registered and can cause substantial distortions of the scale space of individual sections thus leading to significant measurement bias. This paper presents an automated scheme based on Markov Chain Monte Carlo (MCMC) techniques to estimate and eliminate registration bias. For this purpose, a hierarchical model is used based on the assumption that (a) each section has the same, independent probability to be deformed by the sectioning and therefore the subsequent registration process and (b) the varying bias introduced by the registration process has to be balanced such that the average section area is preserved forcing the average scale parameters to have a mean value of 1.0.
机译:当使用非刚性配准方案时,可能会在连续节的配准过程中引入偏差。当大量的截面产生弧形时,这种偏差会累积。会被记录下来,并可能导致各个部分的比例尺空间发生严重变形,从而导致明显的测量偏差。本文提出了一种基于马尔可夫链蒙特卡洛(MCMC)技术的自动化方案,用于估计和消除配准偏差。为此目的,基于以下假设使用分层模型:(a)每个部分具有相同的独立概率而被该部分变形,因此随后的注册过程以及(b)由注册过程引入的变化偏差具有平衡,以保留平均横截面面积,迫使平均比例参数的平均值为1.0。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号