【24h】

On f-Edge Cover-Coloring of Simple Graphs

机译:关于简单图的f边覆盖

获取原文
获取原文并翻译 | 示例

摘要

Let G(V, E) be a simple graph, and let f be an integer function on V with 1 ≤ f(v) ≤ d(v) to each vertex v ∈ V. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex v ∈ V at least f(v) times. The f-edge cover chromatic index of G, denoted by χ′_(fc)(G), is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has f-edge cover chromatic index equal to δ_f or δ_(f-)1, where δ_f = minv∈v{「d(v)/f(v)」}. If χ′_(fc)(G) = δ_f, then G is of C_f Ⅰ class; otherwise G is of C_f Ⅱ class. In this paper, we give some sufficient conditions for a graph to be of C_f Ⅰ class, and discuss the classification problem of complete graphs on f-edge cover-coloring.
机译:令G(V,E)为简单图,令f为V上对每个顶点v∈V≤1≤f(v)≤d(v)的整数函数。图的f边覆盖颜色G是边集E的着色,以使每种颜色在每个顶点v∈V处出现至少f(v)次。 G的f边缘覆盖色指数由χ'_(fc)(G)表示,是使G的f边缘覆盖色存在的最大颜色数。任何简单图G的f边覆盖色度指数等于δ_f或δ_(f-)1,其中δ_f=minv∈v{“ d(v)/ f(v)”}。如果χ'_(fc)(G)=δ_f,则G属于C_fⅠ类;否则G为C_fⅡ类。在本文中,我们为C_fⅠ类图提供了一些充分的条件,并讨论了f-edge封面上完整图的分类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号