首页> 外文会议>Computational Science - ICCS 2007 pt.1; Lecture Notes in Computer Science; 4487 >Inaccuracies of Shape Averaging Method Using Dynamic Time Warping for Time Series Data
【24h】

Inaccuracies of Shape Averaging Method Using Dynamic Time Warping for Time Series Data

机译:时间序列数据使用动态时间规整的形状平均方法的不准确性

获取原文
获取原文并翻译 | 示例

摘要

Shape averaging or signal averaging of time series data is one of the prevalent subroutines in data mining tasks, where Dynamic Time Warping distance measure (DTW) is known to work exceptionally well with these time series data, and has long been demonstrated in various data mining tasks involving shape similarity among various domains. Therefore, DTW has been used to find the average shape of two time series according to the optimal mapping between them. Several methods have been proposed, some of which require the number of time series being averaged to be a power of two. In this work, we will demonstrate that these proposed methods cannot produce the real average of the time series. We conclude with a suggestion of a method to potentially find the shape-based time series average.
机译:时间序列数据的形状平均或信号平均是数据挖掘任务中最普遍的子例程之一,其中动态时间规整距离度量(DTW)可以与这些时间序列数据配合使用,并且在各种数据挖掘中早已得到证明涉及多个领域之间形状相似性的任务。因此,DTW已用于根据两个时间序列之间的最佳映射关系来找到它们的平均形状。已经提出了几种方法,其中一些方法要求将时间序列的数量平均为二的幂。在这项工作中,我们将证明这些建议的方法不能产生时间序列的真实平均值。我们最后提出了一种可能找到基于形状的时间序列平均值的方法的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号