首页> 外文会议>Computational science and its applications-ICCSA 2009 >Nine Point-EDGSOR Iterative Method for the Finite Element Solution of 2D Poisson Equations
【24h】

Nine Point-EDGSOR Iterative Method for the Finite Element Solution of 2D Poisson Equations

机译:二维泊松方程有限元解的九点-EDGSOR迭代方法

获取原文
获取原文并翻译 | 示例

摘要

In previous studies, the 4 Point-Explicit Decoupled Group (EDG) iterative method without or with a weighted parameter, ω has been shown to be much faster as compared to the existing four point block iterative method. Due to the effectiveness of this method, the primary goal of this paper is to illustrate the advantage of the 9 Point-EDGSOR in solving two-dimensional Poisson equations by using the half-sweep triangle finite element approximation equation based on the Galerkin scheme. In fact, formulations of the 4, 6, and 9 Point-EDGSOR iterative methods are also presented. Results of numerical experiments are recorded to show the effectiveness of the 9 Point-EDGSOR method as compared to the 4, and 6 Point-EDGSOR methods.
机译:在先前的研究中,与现有的四点分块迭代方法相比,没有或具有加权参数ω的四点显式解耦组(EDG)迭代方法已被证明要快得多。由于该方法的有效性,本文的主要目的是通过使用基于Galerkin方案的半扫描三角形有限元逼近方程来说明9点EDGSOR在求解二维Poisson方程中的优势。实际上,还介绍了4、6和9点-EDGSOR迭代方法的公式。记录了数值实验的结果,以显示9点-EDGSOR方法与4点和6点-EDGSOR方法相比的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号