首页> 外文会议>Computational methods in systems biology >Improved Parameter Estimation for Completely Observed Ordinary Differential Equations with Application to Biological Systems
【24h】

Improved Parameter Estimation for Completely Observed Ordinary Differential Equations with Application to Biological Systems

机译:完全观测常微分方程的改进参数估计及其在生物系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

We consider parameter estimation in ordinary differential equations (ODEs) from completely observed systems, and describe an improved version of our previously reported heuristic algorithm (IET Syst. Biol, 2007). Basically, in that method, estimation based on decomposing the problem to simulation of one ODE, is followed by estimation based on simulation of all ODEs of the system.rnThe main algorithmic improvement compared to the original version, is that we decompose not only to single ODEs, but also to arbitrary subsets of ODEs, as a complementary intermediate step. The subsets are selected based on an analysis of the interaction between the variables and possible common parameters.rnWe evaluate our algorithm on a number of well-known hard test problems from the biological literature. The results show that our approach is more accurate and considerably faster compared to other reported methods on these problems. Additionally, we find that the algorithm scales favourably with problem size.
机译:我们考虑从完全观察到的系统中的常微分方程(ODE)中进行参数估计,并描述我们先前报道的启发式算法的改进版本(IET Syst。Biol,2007)。基本上,在该方法中,基于将问题分解为一个ODE的模拟进行估计,然后基于系统的所有ODE的模拟进行估计。与原始版本相比,主要的算法改进是我们不仅将分解为单个ODE,但也包括ODE的任意子集,作为补充的中间步骤。通过分析变量与可能的公共参数之间的相互作用来选择子集。我们在生物学文献中针对许多众所周知的硬测试问题评估了我们的算法。结果表明,与其他已报道的解决这些问题的方法相比,我们的方法更加准确且速度更快。此外,我们发现该算法可以随着问题的大小而扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号