首页> 外文会议>Computational Mechanics >Computational Inverse Procedure for Identification of Structural Dynamic Loads
【24h】

Computational Inverse Procedure for Identification of Structural Dynamic Loads

机译:识别结构动载荷的计算逆过程

获取原文

摘要

It is generally difficult to measure dynamic loads directly in the case of the complexity of the structure or the variant forms of the loads, such as wave source, road excitation. A computational inverse procedure is a promising way to determine these transient loads. This procedure recovers the time history and the distribution functions of both concentrated and extended loads based on the knowledge of displacement esponses at only one receiving point on a surface of the structure. This procedure assumed that the time and spatial domain dependencies of the loading function are separable. Two time-discrete kernel functions, dynamic Green’s function and the response function of Heaviside step excitation are obtained using the FEM method. By applying the kernel functions, the displacement responses for a dynamic load with an arbitrary time function can be expressed in a form of convolution integral and the extended loading source is treated as a linear superposition of point sources. These continuous convolution functions are then temporally and spatially discretized. Since the Green’s or Heaviside’s function matrix is generally ill-conditioned, we can not simply use the conventional matrix operation for deconvolution. To overcome this difficulty, error function (objective function) is constructed and the optimization scheme is employed to recover both the loading time history and the distribution function. Numerical examples for both concentrated and extended load demonstrate the efficiency and accuracy of the proposed procedure.u0000n)
机译:在结构的复杂性或负载的变化形式(例如波源,道路激励)的情况下,通常很难直接测量动态负载。计算逆过程是确定这些瞬态负载的一种有前途的方法。此过程基于对结构表面上仅一个接收点处的位移响应的了解,恢复了集中载荷和扩展载荷的时间历程和分布函数。该过程假定加载函数的时域和时域依赖性是可分离的。使用FEM方法获得了两个时间离散的内核函数,动态格林函数和Heaviside阶跃激励的响应函数。通过应用核函数,可以用卷积积分的形式表示具有任意时间函数的动态载荷的位移响应,并将扩展载荷源视为点源的线性叠加。然后在时间和空间上离散这些连续的卷积函数。由于Green或Heaviside的函数矩阵通常是病态的,因此我们不能简单地使用常规矩阵运算进行反卷积。为了克服这个困难,构造了误差函数(目标函数),并采用优化方案来恢复加载时间历史和分布函数。集中载荷和扩展载荷的数值示例证明了所提出程序的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号