首页> 外文会议>Computational intelligence : Theory and applications >ART-based automatic generation of membership functions for fuzzy controllers in robotics
【24h】

ART-based automatic generation of membership functions for fuzzy controllers in robotics

机译:基于ART的机器人模糊控制器隶属函数的自动生成。

获取原文
获取原文并翻译 | 示例

摘要

Designing fuzzy controllers involves both identifying suitable fuzzy dicretizations of the input and output spaces (number of fuzzy terms and related membership functions) and drawing effective rule bases (hopefully compact and complete). Learning from examples is a very efficicnt way for acquiring knowledge. Moreover, providing reliable examples is easire than directly ddesigning and coding a control strategy. Supervised learning is therefore appealing for automatically building control systems. It may also be used as quick start-up for applications requiring further on-line learning (through reinforce-based techniques or processing of further appropriate example). Supervised techniques for building rule bases form suitable examples generally rely on pre-defined fuzzy discretizations of the input and output spaces. This paper proposes the use of an ART-based neural architecture for identifying, starting from examplex, an appropriate set of fuzzy terms and associated membership functions. These data are then used by an ID3-based machine learning algorithm for building fuzzy control rules. The ART framework provides fast convergence and incremental building of classes, gracefull accounting for the integration of new sample data. The whole chain (the neural architecture for building fuzzy discretizations and the machine learning algorithm for drawing fuzzy rules) has been proved on examples provided by several operators, with different skills, driving a real vehicle along the right-hand wall in an indoor environment. The obtained results are shown, discussed and compared with the performance of controllers using human difined fuzzy partitions.
机译:设计模糊控制器既要确定输入和输出空间的合适模糊离散化(模糊项的数量和相关的隶属函数),又要绘制有效的规则库(希望紧凑而完整)。从例子中学习是获取知识的非常有效的方式。此外,提供可靠的示例比直接设计和编码控制策略更容易。因此,有监督的学习对于自动构建控制系统很有吸引力。它也可以用作需要进一步在线学习的应用程序的快速启动(通过基于增强的技术或其他合适示例的处理)。建立规则库的监督技术形成合适的示例,通常依赖于输入和输出空间的预定义模糊离散化。本文建议使用基于ART的神经体系结构,从examplex开始识别一组适当的模糊项和关联的隶属函数。然后,基于ID3的机器学习算法将这些数据用于构建模糊控制规则。 ART框架提供了快速的收敛和类的增量构建,为新样本数据的集成提供了充分的考虑。整个链(用于构建模糊离散化的神经体系结构和用于绘制模糊规则的机器学习算法)已在由几名具有不同技能的操作员提供的示例中得到了证明,这些示例在室内环境中沿着右手边的墙壁驾驶真实车辆。显示的结果,讨论的结果以及与使用人为定义的模糊分区的控制器的性能进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号