首页> 外文会议>Computational Intelligence for Measurement Systems and Applications, 2009. CIMSA '09 >Nonlinear static decoupling of six-dimension force sensor for walker dynamometer system based on artificial neural network
【24h】

Nonlinear static decoupling of six-dimension force sensor for walker dynamometer system based on artificial neural network

机译:基于人工神经网络的助力测功机系统六维力传感器非线性静态解耦

获取原文

摘要

The static coupling of six-dimension force sensor for walker dynamometer system is a key factor to limit its measuring precision. A new decoupling method based on artificial neural network is proposed in this paper. Relevant error check results shows that, after the calibration by using the back propagation neural network and radial basis function neural networks, the maximal system precision error with single-direction force was 7.78% and 4.33% and the maximal crosstalk was 7.49% and 6.52%,respectively. In comparison with traditional linear calibration method, the proposed technique can effectively increase the measurement accuracy of walker loads and greatly decrease the coupling effect.
机译:步行测功机系统的六维力传感器的静态耦合是限制其测量精度的关键因素。提出了一种基于人工神经网络的解耦方法。相关误差检查结果表明,利用反向传播神经网络和径向基函数神经网络进行标定后,单向力的最大系统精度误差为7.78%和4.33%,最大串扰为7.49%和6.52% ,分别。与传统的线性标定方法相比,该技术可以有效地提高助行器载荷的测量精度,并大大降低耦合效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号