首页> 外文会议>Computational intelligence for knowledge-based systems design >Multi-class Imbalanced Data-Sets with Linguistic Fuzzy Rule Based Classification Systems Based on Pairwise Learning
【24h】

Multi-class Imbalanced Data-Sets with Linguistic Fuzzy Rule Based Classification Systems Based on Pairwise Learning

机译:基于成对学习的基于语言模糊规则的分类系统多类不平衡数据集

获取原文
获取原文并翻译 | 示例

摘要

In a classification task, the imbalance class problem is present when the data-set has a very different distribution of examples among their classes. The main handicap of this type of problem is that standard learning algorithms consider a balanced training set and this supposes a bias towards the majority classes. In order to provide a correct identification of the different classes of the problem, we propose a methodology based on two steps: first we will use the one-vs-one binarization technique for decomposing the original data-set into binary classification problems. Then, whenever each one of these binary subproblems is imbalanced, we will apply an oversampling step, using the SMOTE algorithm, in order to rebalance the data before the pairwise learning process. For our experimental study we take as basis algorithm a linguistic Fuzzy Rule Based Classification System, and we aim to show not only the improvement in performance achieved with our methodology against the basic approach, but also to show the good synergy of the pairwise learning proposal with the selected oversampling technique.
机译:在分类任务中,当数据集在类别之间的示例分布非常不同时,就会出现不平衡类别问题。这类问题的主要障碍是标准学习算法考虑了平衡的训练集,并且这假设偏向多数班级。为了正确识别问题的不同类别,我们提出了一种基于两个步骤的方法:首先,我们将使用一对一二值化技术将原始数据集分解为二进制分类问题。然后,每当这些二进制子问题中的每一个不平衡时,我们都将使用SMOTE算法应用过采样步骤,以便在成对学习过程之前重新平衡数据。在我们的实验研究中,我们以基于语言模糊规则的分类系统为基础算法,不仅旨在展示我们的方法相对于基本方法在性能上的改进,而且还展示了成对学习提案与所选的过采样技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号