首页> 外文会议>Computational data and social networks >The Network of Causal Relationships in the U.S. Stock Market
【24h】

The Network of Causal Relationships in the U.S. Stock Market

机译:美国股票市场的因果关系网络

获取原文
获取原文并翻译 | 示例

摘要

We propose a network-based framework to study causal relationships in financial markets and demonstrate the proposed approach by applying it to the entire U.S. stock market. Directed networks (referred to as causal market graphs) are constructed based on stock return time series data during 2001-2017 using Granger causality as a measure of pairwise causal relationships between all stocks. We consider the dynamics of structural properties of the constructed network snapshots, group stocks into network-based clusters, as well as identify the most "influential" stocks via a PageRank algorithm. The proposed approaches offer a new angle for analyzing global characteristics and trends of the stock market using network-based techniques.
机译:我们提出了一个基于网络的框架来研究金融市场中的因果关系,并通过将其应用于整个美国股票市场来演示所提出的方法。使用Granger因果关系作为所有股票之间成对因果关系的量度,根据2001-2017年的股票收益时间序列数据构建定向网络(称为因果市场图)。我们考虑构造的网络快照的结构属性的动态变化,将股票分组为基于网络的群集,以及通过PageRank算法确定最具“影响力”的股票。所提出的方法为使用基于网络的技术分析股票市场的全球特征和趋势提供了一个新的角度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号