首页> 外文会议>Compressive sensing II >A capon beamforming method for clutter suppression in colocated compressive sensing based MIMO radars
【24h】

A capon beamforming method for clutter suppression in colocated compressive sensing based MIMO radars

机译:基于共置压缩感知的MIMO雷达中抑制杂波的Capon波束形成方法

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) based multi-input multi-output (MIMO) radar systems that explore the sparsity of targets in the target space enable either the same localization performance as traditional methods but with significantly fewer measurements, or significantly improved performance with the same number of measurements. However, the enabling assumption, i.e., the target sparsity, diminishes in the presence of clutter, since clutters is highly correlated with the desire target echoes. This paper proposes an approach to suppress clutter in the context of CS MIMO radars. Assuming that the clutter covariance is known, Capon beamforming is applied at the fusion center on compressively obtained data, which are forwarded by the receive antennas. Subsequently, the target is estimated using CS theory, by exploiting the sparsity of the beamformed signals.
机译:探索基于目标空间稀疏性的基于压缩传感(CS)的多输入多输出(MIMO)雷达系统,可以实现与传统方法相同的定位性能,但测量量却大大减少,或者在相同数量的情况下性能得到了显着改善测量值。然而,由于杂波与期望的目标回波高度相关,因此在杂波的存在下,使能的假设即目标稀疏性减小。本文提出了一种在CS MIMO雷达环境下抑制杂波的方法。假设杂波协方差是已知的,则在融合中心将Capon波束成形应用于以压缩方式获得的数据,这些数据由接收天线转发。随后,通过利用波束成形信号的稀疏性,使用CS理论估算目标。

著录项

  • 来源
    《Compressive sensing II》|2013年|87170J.1-87170J.7|共7页
  • 会议地点 Baltimore MD(US)
  • 作者单位

    Department of Electrical Computer Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8058;

    Department of Electrical Computer Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8058;

    Department of Electrical Computer Engineering Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8058;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compressive sensing; MIMO Radar; DOA estimation; Clutter suppression;

    机译:压缩感测; MIMO雷达DOA估算;杂波抑制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号