首页> 外文会议>Complex Motion; Lecture Notes in Computer Science; 3417 >Tracking Complex Objects Using Graphical Object Models
【24h】

Tracking Complex Objects Using Graphical Object Models

机译:使用图形对象模型跟踪复杂对象

获取原文
获取原文并翻译 | 示例

摘要

We present a probabilistic framework for component-based automatic detection and tracking of objects in video. We represent objects as spatio-temporal two-layer graphical models, where each node corresponds to an object or component of an object at a given time, and the edges correspond to learned spatial and temporal constraints. Object detection and tracking is formulated as inference over a directed loopy graph, and is solved with non-parametric belief propagation. This type of object model allows object-detection to make use of temporal consistency (over an arbitrarily sized temporal window), and facilitates robust tracking of the object. The two layer structure of the graphical model allows inference over the entire object as well as individual components. AdaBoost detectors are used to define the likelihood and form proposal distributions for components. Proposal distributions provide 'bottom-up' information that is incorporated into the inference process, enabling automatic object detection and tracking. We illustrate our method by detecting and tracking two classes of objects, vehicles and pedestrians, in video sequences collected using a single grayscale uncalibrated car-mounted moving camera.
机译:我们为基于组件的视频中的对象自动检测和跟踪提供了一个概率框架。我们将对象表示为时空两层图形模型,其中每个节点在给定的时间对应于一个对象或对象的组件,而边缘对应于学习到的空间和时间约束。对象检测和跟踪被公式化为对有向环图的推理,并通过非参数置信传播解决。这种类型的对象模型允许对象检测利用时间一致性(在任意大小的时间窗口上),并有助于对对象进行可靠的跟踪。图形模型的两层结构允许推断整个对象以及单个组件。 AdaBoost检测器用于定义可能性并形成组件的提议分布。提案分发提供了“自下而上”的信息,这些信息已合并到推理过程中,从而实现了自动对象检测和跟踪。我们通过检测和跟踪使用单个未校准的灰度车载移动摄像机收集的视频序列中的两类物体(车辆和行人)来说明我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号