首页> 外文会议>Complex Mediums VI: Light and Complexity >First-principles calculation of electrical forces among nanospheres in a uniform applied electric field
【24h】

First-principles calculation of electrical forces among nanospheres in a uniform applied electric field

机译:均匀施加电场中纳米球之间的电场力的第一性原理计算

获取原文
获取原文并翻译 | 示例

摘要

We present a unified framework for a first-principles calculation of the electric force acting on dielectric or metallic nanospheres suspended in a dielectric host and subject to a uniform external electric field. This framework is based on the spectral representation of the local electric field in a composite medium. The quasi-static (or "surface-plasmon") eigenstates of a cluster of spheres are first calculated, numerically. Then those are used to calculate the force on any sphere as the gradient of the total electrostatic energy with respect to the position of that sphere. This approach is applicable even when the spheres are very closely spaced, and even when they are metallic: No infinities ever appear. The forces are not limited to dipole-dipole forces. Moreover, the force acting on any sphere is not a simple sum of two-body forces: When the inter-sphere gaps are small, complicated many-body forces appear. This is due to the fact that, when a sphere center is displaced slightly, the electric polarization of all the other spheres is changed. Consequently, the total electrical energy is changed in a way that cannot be represented as a sum of two-body energy changes. Explicit calculations of these forces for a few selected sphere clusters are presented. The results are quite different from what is obtained in the dipole approximation.
机译:我们提供了一个统一的框架,用于计算作用于悬浮在电介质主体中并受到均匀外部电场的电介质或金属纳米球的电的第一性原理。该框架基于复合介质中局部电场的频谱表示。首先,通过数值计算球团的准静态(或“表面等离子体”)本征态。然后,将其用于计算任何球体上的力,作为总静电能量相对于该球体位置的梯度。即使球体之间的间距非常紧密,甚至是金属球,也可以使用这种方法:永远不会出现无限大的情况。力不限于偶极-偶极力。而且,作用在任何球体上的力不是两体力的简单总和:当球间间隙较小时,会出现复杂的多体力。这是由于以下事实:当球心稍微移动时,所有其他球的电极化都会改变。因此,总电能以无法表示为两体能量变化之和的方式改变。给出了一些选定球簇的这些力的显式计算。结果与偶极近似中获得的结果完全不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号