【24h】

Prediction of Protein Catalytic Residues by Local Structural Rigidity

机译:通过局部结构刚度预测蛋白质催化残基

获取原文
获取原文并翻译 | 示例

摘要

Due to the large number of protein structures whose functions are unknown, it becomes increasing important to study the structural characteristics of catalytic residues. Here, we use a novel method to calculate the local structural rigidity (LSR) of protein. Based on a dataset of 760 proteins, the results show that catalytic residues have distinct structural properties. They are shown to be extremely rigid based on the calculation of LSR. Finally, we present a machine-learning based method to predict catalytic residues from protein structure using LSR as primary input feature. The prediction sensitivity and specificity are 0.86 and 0.86, respectively, and the Matthew¡¦s correlation coefficient is 0.72.
机译:由于功能未知的大量蛋白质结构,研究催化残基的结构特征变得越来越重要。在这里,我们使用一种新颖的方法来计算蛋白质的局部结构刚度(LSR)。基于760种蛋白质的数据集,结果表明催化残基具有不同的结构特性。根据LSR的计算,它们显示出极高的刚性。最后,我们提出一种基于机器学习的方法,以LSR作为主要输入特征,从蛋白质结构中预测催化残基。预测灵敏度和特异度分别为0.86和0.86,Matthew的相关系数为0.72。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号