首页> 外文会议>Cognitive Information Processing (CIP), 2012 3rd International Workshop on >Detection of unknown constant magnitude signals in time-varying channels
【24h】

Detection of unknown constant magnitude signals in time-varying channels

机译:在时变信道中检测未知的恒定幅度信号

获取原文
获取原文并翻译 | 示例

摘要

Spectrum sensing constitutes a key ingredient in many cognitive radio paradigms in order to detect and protect primary transmissions. Most sensing schemes in the literature assume a time-invariant channel. However, when operating in low Signal-to-Noise Ratio (SNR) conditions, observation times are necessarily long and may become larger than the coherence time of the channel. In this paper the problem of detecting an unknown constant-magnitude waveform in frequency-flat time-varying channels with noise background of unknown variance is considered. The channel is modeled using a basis expansion model (BEM) with random coefficients. Adopting a generalized likelihood ratio (GLR) approach in order to deal with nuisance parameters, a non-convex optimization problem results. We discuss different possibilities to circumvent this problem, including several low complexity approximations to the GLR test as well as an efficient fixed-point iterative method to obtain the true GLR statistic. The approximations exhibit a performance ceiling in terms of probability of detection as the SNR increases, whereas the true GLR test does not. Thus, the proposed fixed-point iteration constitutes the preferred choice in applications requiring a high probability of detection.
机译:频谱感测是许多认知无线电范例中的关键要素,以检测和保护主要传输。文献中的大多数传感方案都采用时不变信道。但是,在低信噪比(SNR)条件下运行时,观察时间必定较长,并且可能会大于通道的相干时间。本文考虑了在方差未知的噪声背景下,在频率平坦的时变信道中检测未知恒定振幅波形的问题。使用具有随机系数的基本扩展模型(BEM)对通道进行建模。采用广义似然比(GLR)方法来处理烦人的参数,会导致非凸优化问题。我们讨论了解决此问题的各种可能性,包括对GLR测试的几种低复杂度近似以及获得真实GLR统计量的有效定点迭代方法。随SNR的增加,近似值在检测概率方面表现出性能上限,而真正的GLR测试则没有。因此,在要求高检测概率的应用中,建议的定点迭代构成了首选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号