首页> 外文会议>Conference on mobile multimedia/image processing, security, and applications >3D Indoor Scene Reconstruction and Change Detection for Robotic Sensing and Navigation
【24h】

3D Indoor Scene Reconstruction and Change Detection for Robotic Sensing and Navigation

机译:用于机器人感应和导航的3D室内场景重建和变化检测

获取原文

摘要

A new methodology for 3D change detection which can support effective robot sensing and navigation in a reconstructed indoor environment is presented in this paper. We register the RGB-D images acquired with an untracked camera into a globally consistent and accurate point-cloud model. This paper introduces a robust system that detects camera position for multiple RGB video frames by using both photo-metric error and feature based method. It utilizes the iterative closest point (ICP) algorithm to establish geometric constraints between the point-cloud as they become aligned. For the change detection part, a bag-of-word (DBoW) model is used to match the current frame with the previous key frames based on RGB images with Oriented FAST and Rotated BRIEF (ORB) feature. Then combine the key-frame translation and ICP to align the current point-cloud with reconstructed 3D scene to localize the robot position. Meanwhile, camera position and orientation are used to aid robot navigation. After preprocessing the data, we create an Octomap Model to detect the scene change measurements. The experimental evaluations performed to evaluate the capability of our algorithm show that the robot's location and orientation are accurately determined and provide promising results for change detection indicating all the object changes with very limited false alarm rate.
机译:本文提出了一种新的3D变化检测方法,该方法可以在重建的室内环境中支持有效的机器人感测和导航。我们将用未跟踪的相机获取的RGB-D图像注册到全局一致且准确的点云模型中。本文介绍了一种强大的系统,该系统可以同时使用光度误差和基于特征的方法来检测多个RGB视频帧的相机位置。它利用迭代最近点(ICP)算法在点云之间对齐时在它们之间建立几何约束。对于更改检测部分,使用词袋(DBoW)模型基于具有定向FAST和旋转公文(ORB)功能的RGB图像将当前帧与以前的关键帧进行匹配。然后结合关键帧平移和ICP将当前点云与重构的3D场景对齐,以定位机器人位置。同时,摄像头的位置和方向用于辅助机器人导航。在对数据进行预处理之后,我们创建一个Octomap模型来检测场景变化测量值。为评估我们算法的能力而进行的实验评估表明,可以准确确定机器人的位置和方向,并为变化检测提供了有希望的结果,表明所有对象的变化都具有非常有限的虚警率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号