首页> 外文会议>Conference on Image-Guided Procedures, Robotic Interventions, and Modeling >The Introduction of Capillary Structures in 4D Simulated Vascular Tree for ART 3.5D Algorithm Further Validation
【24h】

The Introduction of Capillary Structures in 4D Simulated Vascular Tree for ART 3.5D Algorithm Further Validation

机译:用于ART 3.5D算法进一步验证的4D模拟血管树中毛细血管结构的引入

获取原文

摘要

Several neurosurgical procedures, such as Artero Venous Malformations (AVMs), aneurysm embolizations and StereoElectroEncephaloGraphy (SEEG) require accurate reconstruction of the cerebral vascular tree, as well as the classification of arteries and veins, in order to increase the safety of the intervention. Segmentation of arteries and veins from 4D CT perfusion scans has already been proposed in different studies. Nonetheless, such procedures require long acquisition protocols and the radiation dose given to the patient is not negligible. Hence, space is open to approaches attempting to recover the dynamic information from standard Contrast Enhanced Cone Beam Computed Tomography (CE-CBCT) scans. The algorithm proposed by our team is called ART 3.5 D. It is a novel algorithm based on the postprocessing of both the angiogram and the raw data of a standard Digital Subtraction Angiography from a CBCT (DSA-CBCT) allowing arteries and veins segmentation and labeling without requiring any additional radiation exposure for the patient and neither lowering the resolution. In addition, while in previous versions of the algorithm just the distinction of arteries and veins was considered, here the capillary phase simulation and identification is introduced, in order to increase further information useful for more precise vasculature segmentation.
机译:为了提高干预的安全性,一些神经外科手术程序,如动脉静脉畸形(AVM),动脉瘤栓塞术和立体脑电图(SEEG),需要准确重建脑血管树以及对动脉和静脉进行分类。在不同的研究中已经提出了从4D CT灌注扫描中分割动脉和静脉的方法。但是,这样的程序需要很长的采集协议,并且给予患者的辐射剂量不可忽略。因此,开放空间为尝试从标准对比度增强锥束计算机断层扫描(CE-CBCT)扫描中恢复动态信息的方法敞开了大门。我们团队提出的算法称为ART 3.5D。这是一种基于CBCT(DSA-CBCT)对标准数字减影血管造影术进行血管造影和原始数据后处理的新颖算法,可以对动脉和静脉进行分割和标记无需对患者进行任何额外的辐射照射,也不会降低分辨率。另外,虽然在该算法的先前版本中仅考虑了动脉和静脉的区别,但在此引入了毛细血管相的仿真和识别,以增加对更精确的脉管系统分割有用的更多信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号