首页> 外文会议>Conference on Artificial Intelligence in Medicine >Gated Hidden Markov Models for Early Prediction of Outcome of Internet-Based Cognitive Behavioral Therapy
【24h】

Gated Hidden Markov Models for Early Prediction of Outcome of Internet-Based Cognitive Behavioral Therapy

机译:基于门禁的隐马尔可夫模型对基于互联网的认知行为疗法的结果的早期预测

获取原文

摘要

Depression is a major threat to public health and its mitigation is considered to be of utmost importance. Internet-based Cognitive Behavioral Therapy (ICBT) is one of the employed treatments for depression. However, for the approach to be effective, it is crucial that the outcome of the treatment is accurately predicted as early as possible, to allow for its adaptation to the individual patient. Hidden Markov models (HMMs) have been commonly applied to characterize systematic changes in multivariate time series within health care. However, they have limited capabilities in capturing long-range interactions between emitted symbols. For the task of analyzing ICBT data, one such long-range interaction concerns the dependence of state transition on fractional change of emitted symbols. Gated Hidden Markov Models (GHMMs) are proposed as a solution to this problem. They extend standard HMMs by modifying the Expectation Maximization algorithm; for each observation sequence, the new algorithm regulates the transition probability update based on the fractional change, as specified by domain knowledge. GHMMs are compared to standard HMMs and a recently proposed approach, Inertial Hidden Markov Models, on the task of early prediction of ICBT outcome for treating depression; the algorithms are evaluated on outcome prediction, up to 7 weeks before ICBT ends. GHMMs are shown to outperform both alternative models, with an improvement of AUG ranging from 12 to 23%. These promising results indicate that considering fractional change of the observation sequence when updating state transition probabilities may indeed have a positive effect on early prediction of ICBT outcome.
机译:抑郁症是对公共卫生的主要威胁,减轻抑郁症被认为是最重要的。基于互联网的认知行为疗法(ICBT)是抑郁症的一种采用的治疗方法。然而,为使该方法有效,至关重要的是,应尽早准确预测治疗的结果,以使其适应单个患者。隐马尔可夫模型(HMM)已普遍应用于表征卫生保健中多元时间序列的系统变化。但是,它们在捕获发出的符号之间的远程交互方面功能有限。对于分析ICBT数据的任务,一种这样的远程交互作用涉及状态转换对发射符号的分数变化的依赖性。提出了门控隐马尔可夫模型(GHMM)作为该问题的解决方案。它们通过修改期望最大化算法来扩展标准HMM。对于每个观察序列,新算法根据领域知识指定的分数变化来调节过渡概率更新。 GHMMs与标准HMMs以及最近提出的方法Inertial Hidden Markov Models(惯性隐马尔可夫模型)进行了比较,以早期预测ICBT治疗抑郁症的结果。在ICBT结束前最多7周,对结果预测进行算法评估。事实证明,GHMM的性能优于两种替代模型,AUG的提高幅度为12%至23%。这些有希望的结果表明,在更新状态转换概率时考虑观察序列的分数变化可能确实对ICBT结果的早期预测产生积极影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号