首页> 外文会议>Brain informatics >Language Analytics for Assessing Brain Health: Cognitive Impairment, Depression and Pre-symptomatic Alzheimer's Disease
【24h】

Language Analytics for Assessing Brain Health: Cognitive Impairment, Depression and Pre-symptomatic Alzheimer's Disease

机译:评估大脑健康的语言分析:认知障碍,抑郁症和有症状的阿尔茨海默氏病

获取原文
获取原文并翻译 | 示例

摘要

We present data demonstrating how brain health may be assessed by applying data-mining and text analytics to patient language. Three brain-based disorders are investigated - Alzheimer's Disease, cognitive impairment and clinical depression. Prior studies identify particular language characteristics associated with these disorders. Our data show computer-based pattern recognition can distinguish language samples from individuals with and without these conditions. Binary classification accuracies range from 73% to 97% depending on details of the classification task. Text classification accuracy is known to improve substantially as training data approaches web-scale. Such a web scale dataset seems inevitable given the ubiquity of social computing and its language intensive nature. Given this context, we claim that the classification accuracy levels obtained in our experiments are significant findings for the fields of web intelligence and applied brain informatics.
机译:我们提供的数据演示了如何通过将数据挖掘和文本分析应用于患者语言来评估大脑健康。研究了三种基于脑的疾病-阿尔茨海默氏病,认知障碍和临床抑郁症。先前的研究确定了与这些疾病有关的特定语言特征。我们的数据表明,基于计算机的模式识别可以区分有或没有这些条件的语言样本与个人。二进制分类的准确性范围从73%到97%,具体取决于分类任务的细节。众所周知,随着训练数据接近网络规模,文本分类准确性将大大提高。考虑到社交计算的普遍性及其语言密集性,这种网络规模的数据集似乎是不可避免的。在这种情况下,我们声称在我们的实验中获得的分类准确度水平对于网络情报和应用脑信息学领域来说是重要发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号