首页> 外文会议>Biometrics and Identity Management >Modeling Marginal Distributions of Gabor Coefficients: Application to Biometric Template Reduction
【24h】

Modeling Marginal Distributions of Gabor Coefficients: Application to Biometric Template Reduction

机译:Gabor系数的边际分布建模:在生物识别模板约简中的应用

获取原文
获取原文并翻译 | 示例

摘要

Gabor filters have demonstrated their effectiveness in automatic face recognition. However, one drawback of Gabor-based face representations is the huge amount of data that must be stored. One way to reduce space is to quantize Gabor coefficients using an accurate statistical model which should reflect the behavior of the data. Statistical image analysis has revealed one interesting property: the non-Gaussianity of marginal statistics when observed in a transformed domain (like Discrete Cosine Transform, wavelet decomposition, etc.). Two models that have been used to characterize this non-normal behavior are the Generalized Gaussian (GG) and the Bessel K Form densities. This paper provides an empirical comparison of both statistical models in the specific scenario of modeling Gabor coefficients extracted from face images. Moreover, an application for biometric template reduction is presented: based on the underlying statistics, compression is first achieved via Lloyd-Max algorithm. Afterwards, only the best nodes of the grid are preserved using a simple feature selection strategy. Templates are reduced to less than 2 Kbytes with drastical improvements in performance, as demonstrated on the XM2VTS database.
机译:Gabor滤镜已经证明了其在自动人脸识别中的有效性。但是,基于Gabor的面部表示的一个缺点是必须存储大量数据。减少空间的一种方法是使用准确的统计模型来量化Gabor系数,该模型应反映数据的行为。统计图像分析揭示了一个有趣的特性:在变换域中观察时,边缘统计的非高斯性(例如离散余弦变换,小波分解等)。用来表征这种非正常行为的两个模型是广义高斯(GG)和Bessel K形式密度。本文在对从面部图像提取的Gabor系数建模的特定场景中,提供了两种统计模型的经验比较。此外,提出了一种用于生物特征模板缩减的应用程序:基于基础统计,首先通过Lloyd-Max算法实现压缩。之后,使用简单的特征选择策略仅保留网格的最佳节点。如XM2VTS数据库所示,模板的性能大大降低,不足2 KB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号