首页> 外文会议>Biomedical Image Processing II >Model-based vision system for automatic recognition of structures in dental radiographs
【24h】

Model-based vision system for automatic recognition of structures in dental radiographs

机译:基于模型的视觉系统,可自动识别牙科X射线照片中的结构

获取原文
获取原文并翻译 | 示例

摘要

Abstract: X-ray diagnosis of destructive periodontal disease requires assessing serial radiographs by an expert to determine the change in the distance between cemento-enamel junction (CEJ) and the bone crest. To achieve this without the subjectivity of a human expert, a knowledge based system is proposed to automatically locate the two landmarks which are the CEJ and the level of alveolar crest at its junction with the periodontal ligament space. This work is a part of an ongoing project to automatically measure the distance between CEJ and the bone crest along a line parallel to the axis of the tooth. The approach presented in this paper is based on identifying a prominent feature such as the tooth boundary using local edge detection and edge thresholding to establish a reference and then using model knowledge to process sub-regions in locating the landmarks. Segmentation techniques invoked around these regions consists of a neural-network like hierarchical refinement scheme together with local gradient extraction, multilevel thresholding and ridge tracking. Recognition accuracy is further improved by first locating the easily identifiable parts of the bone surface and the interface between the enamel and the dentine and then extending these boundaries towards the periodontal ligament space and the tooth boundary respectively. The system is realized as a collection of tools (or knowledge sources) for pre-processing, segmentation, primary and secondary feature detection and a control structure based on the blackboard model to coordinate the activities of these tools.!
机译:摘要:破坏性牙周疾病的X射线诊断需要由专家评估系列X射线照片,以确定牙釉质-牙釉质结合点(CEJ)与骨rest之间的距离变化。为了在没有人类专家的主观性的情况下实现这一目标,提出了一种基于知识的系统来自动定位两个标志,即CEJ和与牙周膜空间交界处的牙槽c水平。这项工作是正在进行的项目的一部分,该项目沿着平行于牙齿轴线的线自动测量CEJ与牙顶之间的距离。本文提出的方法是基于使用局部边缘检测和边缘阈值识别突出特征(例如牙齿边界)来建立参考,然后使用模型知识来处理子区域以定位地标。在这些区域周围调用的分割技术由类似于分层细化方案的神经网络以及局部梯度提取,多级阈值化和岭跟踪组成。通过首先定位骨骼表面的容易识别的部分以及牙釉质和牙本质之间的界面,然后分别将这些边界扩展到牙周膜空间和牙齿边界,可以进一步提高识别精度。该系统实现为用于预处理,分割,主要和次要特征检测的工具(或知识资源)的集合,以及基于黑板模型的控制结构以协调这些工具的活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号