首页> 外文会议>Biological and artificial computation : From neurosciene to technology >Improving the Performance of Piecewise Linear Separation Incremental Algorithms for Practical Hardware Implementations
【24h】

Improving the Performance of Piecewise Linear Separation Incremental Algorithms for Practical Hardware Implementations

机译:改进分段线性分离增量算法的性能,以实现实际的硬件

获取原文
获取原文并翻译 | 示例

摘要

In this paper we shall review the common problems associated with Piecewise Linear Separation incremental algorithms. This kind of neural models yield poor performances when dealing with some classification problems, due to the evolving schemes used to construct the resulting networks. So as to avoid this undesirable behavior we shall propose a modification criterion. It is based upon the definition of a function which will provide information about the quality of the network growth process during the learning phase. This function is evaluated periodically as the network structure evolves, and will permit, as we shall show through exhaustive benchmarks, to considerably improve the performance (measured in terms of network complexity and generalization capabilities) offered by the networks generated by these incremental models.
机译:在本文中,我们将回顾与分段线性分离增量算法相关的常见问题。由于用于构造结果网络的不断发展的方案,这种神经模型在处理某些分类问题时表现不佳。为了避免这种不良行为,我们将提出修改准则。它基于功能的定义,该功能将提供有关学习阶段网络增长过程质量的信息。正如我们将通过详尽的基准测试所表明的那样,随着网络结构的发展,将定期评估此功能,并将允许显着提高这些增量模型生成的网络所提供的性能(以网络复杂性和泛化能力衡量)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号