首页> 外文会议>Biological and artificial computation : From neurosciene to technology >Stochastic Approximation Techniques and Circuits and Systems Associated Tools for Neural Network Optimization
【24h】

Stochastic Approximation Techniques and Circuits and Systems Associated Tools for Neural Network Optimization

机译:随机逼近技术以及电路和系统的神经网络优化工具

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the optimization of feedforward and feedback Artificial Neural Networks (ANN) working in supervised learning mode. We describe in a general way how it is possible to derive first and second order stochastic approximation methods that provide learning capabilities. We show how certain variables, the sensitivities of the ANN outputs, play a key role in the ANN optimization process. Then we describe how some useful and elementary tools known in circuit theory can be used to compute these sensitivities with a low computational cost. We show by example how to apply these two sets of complementary tools, i.e. stochastic approximation and sensitivity theory.
机译:本文致力于在监督学习模式下工作的前馈和反馈人工神经网络(ANN)的优化。我们以一般方式描述了如何推导提供学习能力的一阶和二阶随机逼近方法。我们展示了某些变量(ANN输出的灵敏度)如何在ANN优化过程中发挥关键作用。然后,我们描述电路原理中已知的一些有用且基本的工具如何可以以较低的计算成本来计算这些灵敏度。我们通过示例展示如何应用这两套互补工具,即随机逼近和敏感性理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号