【24h】

Predicting co-complexed protein pairs based on communication model using diverse biological data

机译:基于使用多种生物学数据的交流模型预测共复合蛋白对

获取原文
获取原文并翻译 | 示例

摘要

Protein-protein interactions play key role in many fundamental biological processes, and comprehensively identifying them represents a crucial step towards systematically defining their cellular roles. Machine learning techniques have been employed to predict protein-protein interactions. One of such approaches is Naive Bayes approach which assumes conditional independence between features. And such problems as suffering from the missing value problems or being prohibitively time-consuming prevent them from being applied to predict PPI as readily as NB. In this work, we frame predicting PPI as a communication problem, and we train a classifier based on channel model (CBCM) to discriminate between pairs of proteins that are co-complexed and pairs that are not. We theoretically demonstrate that NB can be unified into CBCM in certain condition and also experimentally validate that CBCM is an effective approach for predicting co-complexed protein pairs from integrating diverse biological data. Our study suggests that PPI prediction problem can be effectively solved from the point view of communication problem.
机译:蛋白质-蛋白质相互作用在许多基本生物学过程中起着关键作用,全面鉴定它们代表着系统定义其细胞作用的关键一步。机器学习技术已被用来预测蛋白质之间的相互作用。其中一种方法是朴素贝叶斯方法,它假设要素之间的条件独立。诸如价值缺失问题或过分费时的问题使它们无法像NB那样容易地用于预测PPI。在这项工作中,我们将预测PPI构筑为沟通问题,并训练基于通道模型(CBCM)的分类器,以区分共复杂的蛋白质对和非复杂的蛋白质对。我们从理论上证明了在特定条件下可以将NB整合到CBCM中,并且还通过实验验证了CBCM是一种通过整合各种生物学数据来预测复合蛋白对的有效方法。我们的研究表明,从沟通问题的角度来看,PPI预测问题可以得到有效解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号