首页> 外文会议>Bio-inspired systems: Computational and ambient intelligence >Matrix Metric Adaptation Linear Discriminant Analysis of Biomedical Data
【24h】

Matrix Metric Adaptation Linear Discriminant Analysis of Biomedical Data

机译:生物医学数据的矩阵度量自适应线性判别分析

获取原文
获取原文并翻译 | 示例

摘要

A structurally simple, yet powerful, formalism is presented for adapting attribute combinations in high-dimensional data, given categorical data class labels. The rank-1 Mahalanobis distance is optimized in a way that maximizes between-class variability while minimizing within-class variability. This optimization target has resemblance to Fisher's linear discriminant analysis (LDA), but the proposed formulation is more general and yields improved class separation, which is demonstrated for spectrum data and gene expression data.
机译:在给定分类数据类标签的情况下,提出了一种结构简单但功能强大的形式主义,用于适应高维数据中的属性组合。对等级1的Mahalanobis距离进行了优化,以最大程度地减少类间差异,同时最大程度地减少类内差异。该优化目标与费舍尔线性判别分析(LDA)类似,但拟议的配方更为通用,并产生了改进的类别分离,这已在光谱数据和基因表达数据中得到证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号