首页> 外文会议>Bayesian Inference for Inverse Problems >Nonlinear prediction methods for estimation of clique weighting parameters in non-Gaussian image models
【24h】

Nonlinear prediction methods for estimation of clique weighting parameters in non-Gaussian image models

机译:非高斯图像模型中集团加权参数估计的非线性预测方法

获取原文
获取原文并翻译 | 示例

摘要

Abstract: NonGaussian Markov image models are effective in the preservation of edge detail in Bayesian formulations of restoration and reconstruction problems. Included in these models are coefficients quantifying the statistical links among pixels in local cliques, which are typically assumed to have an inverse dependence on distance among the corresponding neighboring pixels. Estimation of these coefficients is a nontrivial task for Non Gaussian models. We present rules for coefficient estimation for edge- preserving models which are particularly effective for edge preservation and noise suppression, using a predictive technique analogous to estimation of the weights of optimal weighted median filters. !8
机译:摘要:非高斯马尔可夫图像模型可有效地保存恢复和重建问题的贝叶斯公式中的边缘细节。这些模型中包含的是量化局部群中像素之间的统计链接的系数,通常假定这些系数与相应相邻像素之间的距离成反比。对于非高斯模型,这些系数的估计是一项艰巨的任务。我们使用类似于预测最佳加权中值滤波器权重的预测技术,为边缘保留模型的系数估计提供了规则,这些规则对于边缘保留和噪声抑制特别有效。 !8

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号