【24h】

Using Compressive Imaging as a Fast Class Formation Method in Automatic Target Acquisition

机译:在自动目标获取中使用压缩成像作为快速分类方法

获取原文
获取原文并翻译 | 示例

摘要

Subspace projection is an effective and established way to form classes in the Automatic Target Acquisition (ATA) problem. Class subspace formation is viewed in this paper as an over specified Fh = u problem. Recent advances in compressive imaging show that this problem can be solved for sparse matrices via iterative techniques. Convergence of these techniques is aided by a metric induced by an appropriately selected norm. In this paper we will use infrared data to show this rapid class formation and to compare convergence for two norms. Based on this class formulation a new method for ATA solution will also be demonstrated.
机译:子空间投影是在自动目标获取(ATA)问题中形成类的有效且已建立的方法。在本文中,类子空间的形成被视为一个过度指定的Fh = u问题。压缩成像的最新进展表明,可以通过迭代技术解决稀疏矩阵的此问题。这些技术的融合是由适当选择的范式引发的度量来辅助的。在本文中,我们将使用红外数据显示这种快速的类形成并比较两个规范的收敛性。基于此类公式,还将展示一种用于ATA解决方案的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号