首页> 外文会议>Automatic Target Recognition XVI >Automatic Target Detection and Recognition in the Process of Interaction between Visual and Object Buffers of Scene Understanding System based on Network-Symbolic models
【24h】

Automatic Target Detection and Recognition in the Process of Interaction between Visual and Object Buffers of Scene Understanding System based on Network-Symbolic models

机译:基于网络符号模型的场景理解系统视觉缓冲区与对象缓冲区交互作用的自动目标检测与识别

获取原文
获取原文并翻译 | 示例

摘要

Modern computer vision systems lack human-like abilities to understand the visual scene, detect, and unambiguously identify and recognize objects. Bottom-up grouping can rarely be effective for real world images if applied to the whole image without having clear criteria of how to further combine obtained small distinctive neighbor regions into meaningful objects. ATR systems that are based on the similar principles become dysfunctional if a target doesn't demonstrate remarkably distinctive and contrasting features that allow for unambiguous separation from background and identification. However, human vision unambiguously separates any object from its background and recognizes it, using a rough but wide peripheral system that tracks motions and regions of interests, and narrow but precise foveal vision that analyzes and recognizes the object in the center of a selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an "understandable" Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and top-level knowledge system. This interaction provides recursive rough context identification of regions of interest in the visual scene and their analysis in the object buffer for precise and unambiguous separation of the target from clutter with following the recognition of the target.
机译:现代计算机视觉系统缺乏类似于人的能力来理解视觉场景,检测并明确识别和识别对象。如果不对如何进一步将获得的独特小邻域组合成有意义的对象有明确的标准,则自下而上的分组如果应用于整个图像,则很少会对现实世界的图像有效。如果目标没有表现出明显的鲜明对比特征,从而无法与背景和识别进行明确区分,那么基于相似原理的ATR系统就会失灵。然而,人类视觉使用粗糙但宽阔的外围系统来跟踪物体的运动和感兴趣区域,并使用狭窄但精确的中心凹视觉来明确地将任何物体与背景分离,并对其进行识别,而中心凹视觉则分析和识别物体在选定区域的中心兴趣和视觉智能,它提供了场景和对象的上下文,并解决了视觉信息中的歧义和不确定性。受生物启发的网络符号模型将图像信息转换为“可理解的”网络符号格式,类似于关系知识模型。网络符号系统中外围系统与中央凹系统之间的等效交互是通过可视缓冲区与对象缓冲区与顶级知识系统之间的交互来实现的。这种交互提供了视觉场景中感兴趣区域的递归粗略上下文识别,并在对象缓冲区中对其进行了分析,以便在识别目标之后将目标与杂物精确而明确地分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号