首页> 外文会议>Statistical atlases and computational models of the heart : atrial segmentation and LV quantification challenges >Left Atrial Segmentation Combining Multi-atlas Whole Heart Labeling and Shape-Based Atlas Selection
【24h】

Left Atrial Segmentation Combining Multi-atlas Whole Heart Labeling and Shape-Based Atlas Selection

机译:结合多图谱全心标记和基于形状的图谱选择的左心房分割

获取原文
获取原文并翻译 | 示例

摘要

Segmentation of the left atria (LA) from late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is challenging since atrial borders are not easily distinguishable in the images. We propose a method based on multi-atlas whole heart segmentation and shape modeling of the LA. In the training phase we first construct whole heart LGE-MRI atlases and build a principal component analysis (PCA) model able to capture the high variability of the LA shapes. All atlases are clustered according to their LA shape using an unsupervised clustering method which additionally outputs the most representative case in each cluster. All cluster representatives are registered to the target image and ranked using conditional entropy. A small subset of the most similar representatives is used to find LA shapes with similar morphology in the training set that are used to obtain the final LA segmentation. We tested our approach using 80 LGE-MRI data for training and 20 LGE-MRI data for testing obtaining a Dice score of 0.842 ± 0.049.
机译:由于late边界在图像中不易区分,因此从late期增强磁共振成像(LGE-MRI)中分割左心房(LA)是一项挑战。我们提出了一种基于多图谱全心分割和洛杉矶形状建模的方法。在训练阶段,我们首先构建全心LGE-MRI地图集,然后建立能够捕获LA形状高度可变性的主成分分析(PCA)模型。所有地图集都使用无监督聚类方法根据其LA形状进行聚类,该方法还会在每个聚类中输出最具代表性的案例。所有聚类代表都注册到目标图像,并使用条件熵进行排名。一小部分最相似的代表用来在训练集中找到具有相似形态的LA形状,以用于获得最终的LA分割。我们使用80个LGE-MRI数据进行训练,并使用20个LGE-MRI数据进行测试,测试了我们的方法,获得的Dice得分为0.842±0.049。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号