首页> 外文会议>Asilomar Conference on Signals, Systems Computers >Signal classification of satellite-based recordings of radiofrequency (RF) transients using data-adaptive dictionaries
【24h】

Signal classification of satellite-based recordings of radiofrequency (RF) transients using data-adaptive dictionaries

机译:使用数据自适应字典对基于卫星的射频(RF)瞬态记录进行信号分类

获取原文

摘要

Ongoing research at Los Alamos National Laboratory (LANL) studies the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich satellite lightning database, that has been previously used for some event classification. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in data-adaptive dictionaries. We explore two dictionary approaches: dictionaries learned directly from data, and analytical, over-complete dictionaries. Discriminative dictionaries learned directly from data do not rely on analytical constraints or knowledge about the signal characteristics, and provide sparse representations that can perform well when used with a statistical classifier. Pursuit-type decompositions over analytical, over-complete dictionaries yield sparse representations by design and can work well for signals in the same function class as the dictionary atoms. We present preliminary results of our work and discuss performance and future development.
机译:洛斯阿拉莫斯国家实验室(LANL)正在进行的研究是利用基于卫星的地面闪电射频观测技术来研究地球的射频(RF)背景。瞬态事件快速在轨记录(FORTE)卫星提供了一个丰富的卫星闪电数据库,该数据库以前已用于某些事件分类。我们现在使用最先进的自适应信号处理技术结合压缩感测和机器学习技术,在FORTE数据库上开发和实现新的事件分类功能。我们的工作重点是在数据自适应字典中使用稀疏表示来改进特征提取。我们探索两种字典方法:直接从数据中学习的字典,以及分析性的,过于完整的字典。直接从数据中学习的区分性字典不依赖于分析约束或关于信号特征的知识,并且提供了与统计分类器一起使用时可以很好执行的稀疏表示。通过分析,过度完成的词典进行追求类型的分解,会通过设计产生稀疏的表示形式,并且可以很好地适用于与词典原子相同功能类的信号。我们提供工作的初步结果,并讨论性能和未来发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号