首页> 外文会议>Asilomar Conference on Signals, Systems Computers >Sparse multivariate autoregressive models with exogenous inputs for modeling intracerebral responses to direct electrical stimulation of the human brain
【24h】

Sparse multivariate autoregressive models with exogenous inputs for modeling intracerebral responses to direct electrical stimulation of the human brain

机译:带有外部输入的稀疏多元自回归模型,用于模拟大脑对人脑直接电刺激的反应

获取原文

摘要

The self-connected group lasso is used to estimate sparse multivariable autoregressive with exogenous (MVARX) input models of the cortical interactions excited by direct current stimulation of the cortex. The group lasso criterion introduces a direct network connection between two sites only if the presence of the connection significantly reduces the mean-squared error of the model. This method is applied to intracranial recordings of the human brain to direct electrical stimulation. Excellent agreement between measured and model-predicted average responses across all data sets is obtained. One-step prediction of the recordings is also used to demonstrate that the model describes the dynamics in individual responses. We study the similarity of network models for a given set of channels when the electrical stimulation is applied at different locations in both wakefulness and nonrapid eye movement (NREM) sleep to identify common network characteristics.
机译:自连接组套索用于估计由皮质的直流电刺激激发的皮质相互作用的外生(MVARX)输入模型的稀疏多变量自回归。仅当连接的存在显着降低模型的均方误差时,组套索标准才在两个站点之间引入直接网络连接。该方法应用于人脑的颅内记录,以指导电刺激。在所有数据集中,测量值和模型预测的平均响应之间都获得了极好的一致性。记录的一步预测也可用于证明模型描述了各个响应中的动态。当在觉醒和非快速眼动(NREM)睡眠的不同位置应用电刺激以识别共同的网络特征时,我们研究给定通道网络模型的相似性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号