首页> 外文会议>Asilomar Conference on Signals, Systems Computers >Multiscale AM-FM image reconstructions based on elastic net regression and Gabor filterbanks
【24h】

Multiscale AM-FM image reconstructions based on elastic net regression and Gabor filterbanks

机译:基于弹性网回归和Gabor滤波器组的多尺度AM-FM图像重建

获取原文

摘要

The paper proposes the use of elastic net regression for reconstructing images from AM-FM components. Current AM-FM reconstruction methods are based on Dominant Component Analysis (DCA), multi-scale DCA, and Channel Component Analysis (CCA). The paper introduce a variation on CCA that uses elastic net regression to minimize the number of channels that are used in the reconstruction. The new approach is validated using a family of Gabor filterbanks that is parameterized by an overlap index. The results show that the elastic net regression component selection algorithm performs significantly better than multiscale DCA.
机译:本文提出使用弹性网回归从AM-FM分量重建图像。当前的AM-FM重建方法基于主成分分析(DCA),多尺度DCA和通道成分分析(CCA)。本文介绍了CCA的一种变体,该变体使用弹性净回归来最小化重建中使用的通道数量。使用由重叠索引参数化的Gabor滤波器组系列对新方法进行了验证。结果表明,弹性净回归分量选择算法的性能明显优于多尺度DCA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号