首页> 外文会议>Artificial neural networks in pattern recognition >A Hidden Markov Model Based Approach for Facial Expression Recognition in Image Sequences
【24h】

A Hidden Markov Model Based Approach for Facial Expression Recognition in Image Sequences

机译:基于隐马尔可夫模型的图像序列人脸表情识别方法

获取原文
获取原文并翻译 | 示例

摘要

One of the important properties of hidden Markov models is the ability to model sequential dependencies. In this study the applicability of hidden Markov models for emotion recognition in image sequences is investigated, i.e. the temporal aspects of facial expressions. The underlying image sequences were taken from the Cohn-Kanade database. Three different features (principal component analysis, orientation histograms and optical flow estimation) from four facial regions of interest (face, mouth, right and left eye) were extracted. The resulting twelve paired combinations of feature and region were used to evaluate hidden Markov models. The best single model with features of principal component analysis in the region face achieved a detection rate of 76.4 %. To improve these results further, two different fusion approaches were evaluated. Thus, the best fusion detection rate in this study was 86.1 %.
机译:隐马尔可夫模型的重要特性之一是能够对顺序依赖性进行建模。在这项研究中,研究了隐马尔可夫模型在图像序列中进行情感识别的适用性,即面部表情的时间方面。底层图像序列取自Cohn-Kanade数据库。从四个感兴趣的面部区域(面部,嘴巴,右眼和左眼)提取了三个不同的特征(主要成分分析,方向直​​方图和光流估计)。生成的特征和区域的十二对组合用于评估隐马尔可夫模型。具有该区域面部主成分分析功能的最佳单一模型的检出率为76.4%。为了进一步改善这些结果,评估了两种不同的融合方法。因此,这项研究中的最佳融合检测率为86.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号