首页> 外文会议>Artificial neural networks in pattern recognition >Recognition of Sequences of Graphical Patterns
【24h】

Recognition of Sequences of Graphical Patterns

机译:图形图案序列的识别

获取原文
获取原文并翻译 | 示例

摘要

Several real-world problems (e.g., in bioinformatics/proteomics, or in recognition of video sequences) can be described as classification tasks over sequences of structured data, i.e. sequences of graphs, in a natural way. This paper presents a novel machine that can learn and carry out decision-making over sequences of graphical data. The machine involves a hidden Markov model whose state-emission probabilities are defined over graphs. This is realized by combining recursive encoding networks and constrained radial basis function networks. A global optimization algorithm which regards to the machine as a unity (instead of a bare superposition of separate modules) is introduced, via gradient-ascent over the maximum-likelihood criterion within a Baum-Welch-like forward-backward procedure. To the best of our knowledge, this is the first machine learning approach capable of processing sequences of graphs without the need of a pre-processing step. Preliminary results are reported.
机译:可以以自然的方式将几个实际问题(例如,在生物信息学/蛋白质组学中,或在识别视频序列中)描述为对结构化数据序列,即图形序列的分类任务。本文提出了一种新颖的机器,它可以学习和执行对图形数据序列的决策。该机器包含一个隐式马尔可夫模型,其状态发射概率是在图形上定义的。这是通过结合递归编码网络和约束径向基函数网络来实现的。通过在类似Baum-Welch的前向-后向程序中通过最大似然准则上的梯度上升,引入了将机器视为一个整体(而不是单独的模块的裸露叠加)的全局优化算法。据我们所知,这是第一种无需预处理即可处理图序列的机器学习方法。报告了初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号