首页> 外文会议>Artificial neural networks in pattern recognition >A New Monte Carlo-Based Error Rate Estimator
【24h】

A New Monte Carlo-Based Error Rate Estimator

机译:一种新的基于蒙特卡洛的误码率估计器

获取原文
获取原文并翻译 | 示例

摘要

Estimating the classification error rate of a classifier is a key issue in machine learning. Such estimation is needed to compare classifiers or to tune the parameters of a parameterized classifier. Several methods have been proposed to estimate error rate, most of which rely on partitioning the data set or drawing bootstrap samples from it. Error estimators can suffer from bias (deviation from actual error rate) and/or variance (sensitivity to the data set). In this work, we propose an error rate estimator that estimates a generative and a posterior probability models to represent the underlying process that generates the data and exploits these models in a Monte Carlo style to provide two biased estimators whose best combination is determined by an iterative solution. We test our estimator against state of the art estimators and show that it provides a reliable estimate in terms of mean-square-error.
机译:估计分类器的分类错误率是机器学习中的关键问题。需要这种估计来比较分类器或调整参数化分类器的参数。已经提出了几种估计错误率的方法,其中大多数方法依赖于对数据集进行分区或从中抽取引导样本。误差估计器可能会受到偏差(与实际误差率的偏差)和/或方差(对数据集的敏感性)的困扰。在这项工作中,我们提出了一种误码率估计器,用于估计生成模型和后验概率模型,以表示生成数据的基础过程,并以蒙特卡洛样式利用这些模型,以提供两个有偏差的估计器,其最佳组合由迭代确定。解。我们根据最先进的估算器对估算器进行了测试,并表明该估算器提供了均方误差方面的可靠估算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号