首页> 外文会议>Artificial neural networks in pattern recognition >Defective Areas Identification in Aircraft Components by Bivariate EMD Analysis of Ultrasound Signals
【24h】

Defective Areas Identification in Aircraft Components by Bivariate EMD Analysis of Ultrasound Signals

机译:通过超声信号的双变量EMD分析识别飞机部件中的缺陷区域

获取原文
获取原文并翻译 | 示例

摘要

In recent years many alternative methodologies and techniques have been proposed to perform non-destructive inspection and maintenance operations of moving structures. In particular, ultrasonic techniques have shown to be very promising for automatic inspection systems. From the literature, it is evident that the neural paradigms are considered, by now, the best choice to automatically classify ultrasound data. At the same time the most appropriate pre-processing technique is still undecided. The aim of this paper is to propose a new and innovative data pre-processing technique that allows the analysis of the ultrasonic data by a complex extension of the Empirical Mode Decomposition (EMD). Experimental tests aiming to detect defective areas in aircraft components are reported and a comparison with classical approaches based on data normalization or wavelet decomposition is also provided.
机译:近年来,已经提出了许多替代方法和技术来执行移动结构的非破坏性检查和维护操作。特别地,超声技术已经显示对于自动检查系统非常有前途。从文献中可以明显看出,到目前为止,神经范例已被视为自动分类超声数据的最佳选择。同时,仍未确定最合适的预处理技术。本文的目的是提出一种新颖的数据预处理技术,该技术可以通过对经验模式分解(EMD)进行复杂扩展来分析超声数据。报告了旨在检测​​飞机部件缺陷区域的实验测试,并与基于数据归一化或小波分解的经典方法进行了比较。

著录项

  • 来源
  • 会议地点 Cairo(EG);Cairo(EG)
  • 作者单位

    Institute of Intelligent Systems for Automation, Italian National Research Council, Bari, Italy;

    Department of Electrical and Electronic Engineering, Imperial College of Science, Technology and Medicine, London, UK;

    Institute of Intelligent Systems for Automation, Italian National Research Council, Bari, Italy;

    Department of Electrical and Electronic Engineering, Imperial College of Science, Technology and Medicine, London, UK;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号