首页> 外文会议>Artificial neural networks in pattern recognition >Comparative Study of Feature Selection for White Blood Cell Differential Counts in Low Resolution Images
【24h】

Comparative Study of Feature Selection for White Blood Cell Differential Counts in Low Resolution Images

机译:低分辨率图像中白细胞差异计数特征选择的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Features that are widely used in digital image analysis and pattern recognition tasks are from three main categories: shape, intensity, and texture invariant features. For computer-aided diagnosis in medical imaging for many specific types of medical problem, the most effective choice of a subset of these features through feature selection is still an open problem. In this work, we consider the problem of white blood cell (leukocyte) recognition into their five primary types: Neutrophils, Lymphocytes, Eosinophils, Monocytes and Basophils using a Support Vector Machine classifier. For features, we use four main intensity histogram calculations, set of 11 invariant moments, the relative area, co-occurrence and run-length matrices, dual tree complex wavelet transform, Haralick and Tamura features. Global sensitivity analysis using Sobol's RS-HDMR which can deal with independent and dependent input variables is used to assess dominate discriminatory power and the reliability of feature models in presence of high dimensional input feature data to build an efficient feature selection. Both the numerical and empirical results of experiments are compared with forward sequential feature selection. Finally, the results obtained from the preliminary analysis of white blood cell classification are presented in confusion matrices and interpreted using Cohen's kappa (k) with the classification framework being validated with experiments conducted on poor quality white blood cell images.
机译:在数字图像分析和模式识别任务中广泛使用的功能来自三个主要类别:形状,强度和纹理不变特征。对于医学成像中许多特定类型的医学问题的计算机辅助诊断,通过特征选择最有效地选择这些特征的子集仍然是一个悬而未决的问题。在这项工作中,我们使用支持向量机分类器将白细胞(白细胞)识别的问题分为五种主要类型:中性粒细胞,淋巴细胞,嗜酸性粒细胞,单核细胞和嗜碱性粒细胞。对于特征,我们使用四个主要强度直方图计算,11个不变矩集,相对面积,共现和游程矩阵,对偶树复小波变换,Haralick和Tamura特征。使用Sobol的RS-HDMR可以进行独立和相关输入变量的全局灵敏度分析,可以评估存在高维输入特征数据时特征性模型的主要区分能力和可靠性,从而建立有效的特征选择。实验的数值和经验结果都与正向顺序特征选择进行了比较。最后,将从白细胞分类的初步分析中获得的结果显示在混淆矩阵中,并使用Cohen的kappa(k)进行解释,并通过对劣质白细胞图像进行的实验对分类框架进行了验证。

著录项

  • 来源
  • 会议地点 Montreal(CA)
  • 作者单位

    Dept. of Computer Science Software Engineering, Concordia University, Montreal, Quebec;

    Dept. of Computer Science Software Engineering, Concordia University, Montreal, Quebec;

    Dept. of Computer Science Software Engineering, Concordia University, Montreal, Quebec;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号