【24h】

Utilizing neural networks to predict wing leading edge slats airloads

机译:利用神经网络预测机翼前缘板条的空气负荷

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a method to predict pressure on the leading edge slats of a business jet using Artificial Neural Networks. Neural Networks are used to avoid the problem with unbiased estiamtors that stems from multicollinearity in the data. Pressure prediction is achieved through mathematical modeling of flight test data collected during the aircraft certification process. Mathematical model parameter selection and pressure port groupings are achieved through a combination of statistical analysis and engineering understanding of the problem. Use is made of Kohonen's Self-Organizing Map as a means of detecting redundant and conflicting data from the flight tests, and in selection of the trainign and test sets for the predictor networks. The backpropagation paradigm is then used to carry out the prediction process. Prediction errors were statistically examined to detect and correct any bias in the modeling process.
机译:本文介绍了一种使用人工神经网络预测公务机前缘板条上压力的方法。神经网络用于避免因数据的多重共线性而引起的无偏估计量问题。通过对飞机认证过程中收集的飞行测试数据进行数学建模,可以实现压力预测。数学模型参数选择和压力端口分组是通过统计分析和对问题的工程理解相结合而实现的。利用Kohonen的“自组织图”作为从飞行测试中检测冗余和冲突数据以及为预测器网络选择训练集和测试集的一种手段。然后使用反向传播范式执行预测过程。对预测误差进行统计检验,以检测和纠正建模过程中的任何偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号