首页> 外文会议>Approximation, randomization, and combinatorial optimization : Algorithms and techniques >Shrinking Maxima, Decreasing Costs: New Online Packing and Covering Problems
【24h】

Shrinking Maxima, Decreasing Costs: New Online Packing and Covering Problems

机译:缩小千里​​马,降低成本:新的在线包装和覆盖问题

获取原文
获取原文并翻译 | 示例

摘要

We consider two new variants of online integer programs that are dual to each other. In the packing problem we are given a set of items and a collection of knapsack constraints over these items that are revealed over time in an online fashion. Upon arrival of a constraint we may need to remove several items (irrevocably) so as to maintain feasibility of the solution. Hence, the set of packed items becomes smaller over time. The goal is to maximize the number, or value, of packed items. The problem originates from a buffer-overflow model in communication networks, where items represent information units broken to multiple packets. The other problem considered is online covering: There is a universe we need to cover. Sets arrive online, and we must decide whether we take each set to the cover or give it up, so the number of sets in the solution grows over time. The cost of a solution is the total cost of sets taken, plus a penalty for each uncovered element. This problem is motivated by team formation, where the universe consists of skills, and sets represent candidates we may hire. The packing problem was introduced in [8] for the special case where the matrix is binary; in this paper we extend the solution to general matrices with non-negative integer entries. The covering problem is introduced in this paper; we present matching upper and lower bounds on its competitive ratio.
机译:我们考虑了在线整数程序的两个新变体,它们互为对偶。在包装问题中,我们获得了一组项目以及对这些项目的背包约束的集合,这些约束随时间以在线方式显示出来。到达约束后,我们可能需要(不可撤消)删除几个项目,以保持解决方案的可行性。因此,包装物品的集合随着时间而变小。目标是使包装物品的数量或价值最大化。该问题源于通信网络中的缓冲区溢出模型,该模型中的项表示分解成多个数据包的信息单元。考虑的另一个问题是在线覆盖:我们需要覆盖一个宇宙。套件在线上到达,我们必须决定是将每套放置在封面上还是予以放弃,因此解决方案中的套件数量会随着时间的增长而增加。解决方案的成本是采用集的总成本,加上每个未发现元素的罚款。这个问题是由团队组成引起的,团队的组成是由技能组成,集合代表了我们可以雇用的候选人。对于矩阵是二进制的特殊情况,在[8]中引入了打包问题。在本文中,我们将解决方案扩展到具有非负整数项的一般矩阵。本文介绍了覆盖问题。我们给出了其竞争比率的匹配上限和下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号