首页> 外文会议>Applied algorithms >An Efficient Face Recognition Method by Fusing Spatial Discriminant Facial Features
【24h】

An Efficient Face Recognition Method by Fusing Spatial Discriminant Facial Features

机译:一种融合空间判别人脸特征的有效人脸识别方法

获取原文
获取原文并翻译 | 示例

摘要

Feature level fusion is a very well known technique for improving the performance of a face recognition system. This paper presents an approach of fusion of directional spatial discriminant features for face recognition. The key idea of the proposed method is to fuse the facial features lying along the horizontal, vertical and diagonal directions, so that this fused feature vector can contain more discriminant information than the individual facial feature of single direction only. However due to the fusion of features the size of fused feature vector becomes larger, which may increase complexity of the classifier to be used for recognition. To optimize this lower dimensional discriminant features are again extracted from this large fused feature vector. In our experiment we have applied G-2DFLD method on the original images to extract the discriminant features. Then original images are converted into diagonal images and another set of discriminant features, representing the diagonal information, are extracted by using the G-2DFLD method. The original and diagonal feature matrices are then fused to form a large feature matrix. The dimension of this large fused matrix is then further reduced by G-2DFLD method and this resultant matrix is used for classification and recognition by Radial Basis Function-Neural Networks (RBF-NN). Experiments on the AT&T (formally known as ORL database) face database indicate the competitive performance of the proposed method, as compared to some existing subspaces-based methods.
机译:特征级融合是用于改善面部识别系统的性能的非常众所周知的技术。本文提出了一种融合方向性空间判别特征的人脸识别方法。所提出方法的关键思想是融合沿水平,垂直和对角线方向分布的面部特征,从而使该融合特征向量比仅具有单个方向的单个面部特征可以包含更多的判别信息。然而,由于特征的融合,融合的特征向量的大小变大,这可能会增加用于识别的分类器的复杂性。为了优化该低维特征,再次从该大融合特征向量中提取特征。在我们的实验中,我们在原始图像上应用了G-2DFLD方法以提取判别特征。然后将原始图像转换为对角线图像,并使用G-2DFLD方法提取代表对角线信息的另一组判别特征。然后将原始特征矩阵和对角特征矩阵融合以形成大特征矩阵。然后,使用G-2DFLD方法进一步缩小此大型融合矩阵的尺寸,并将此所得矩阵用于径向基函数神经网络(RBF-NN)进行分类和识别。与一些现有的基于子空间的方法相比,在AT&T(正式称为ORL数据库)人脸数据库上进行的实验表明,该方法具有竞争优势。

著录项

  • 来源
    《Applied algorithms》|2014年|277-286|共10页
  • 会议地点 Kolkata(IN)
  • 作者单位

    Department of Computer Science Engineering, Jadavpur University,Kolkata, India;

    Department of Master of Computer Application, Techno India, Kolkata, India;

    Department of Computer Science Engineering, Jadavpur University,Kolkata, India;

    Department of Computer Science Engineering, Jadavpur University,Kolkata, India;

    Department of Computer Science Engineering, Jadavpur University,Kolkata, India;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号