首页> 外文会议>Applied algebra, algebraic algorithms, and error-correcting codes >Optimal Bipartite Ramanujan Graphs from Balanced Incomplete Block Designs: Their Characterizations and Applications to Expander/LDPC Codes
【24h】

Optimal Bipartite Ramanujan Graphs from Balanced Incomplete Block Designs: Their Characterizations and Applications to Expander/LDPC Codes

机译:平衡不完整模块设计的最佳二分拉曼努扬图:它们的表征及其在扩展器/ LDPC代码中的应用

获取原文
获取原文并翻译 | 示例

摘要

We characterize optimal bipartite expander graphs and give necessary and sufficient conditions for optimality. We determine the expansion parameters of the BIBD graphs and show that they yield optimal expander graphs that are also bipartite Ramanujan graphs. In particular, we show that the bipartite graphs derived from finite projective and affine geometries yield optimal Ramanujan graphs. This in turn leads to a theoretical explanation of the good performance of a class of LDPC codes.
机译:我们刻画了最优的二部扩张器图,并给出了必要和充分的条件以实现最优性。我们确定了BIBD图的扩展参数,并表明它们产生了最佳的扩展器图,该扩展器图也是二分Ramanujan图。特别是,我们显示了从有限射影和仿射几何图形导出的二分图产生了最佳拉曼努扬图。这进而导致对一类LDPC码的良好性能的理论解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号