首页> 外文会议>Applications of Digital Image Processing XXVI >Robust Shift and Add Approach to Super-Resolution
【24h】

Robust Shift and Add Approach to Super-Resolution

机译:强大的移位和加法实现超分辨率

获取原文
获取原文并翻译 | 示例

摘要

In the last two decades, many papers have been published, proposing a variety of methods for multi-frame resolution enhancement. These methods, which have a wide range of complexity, memory and time requirements, are usually very sensitive to their assumed model of data and noise, often limiting their utility. Different implementations of the non-iterative Shift and Add concept have been proposed as very fast and effective super-resolution algorithms. The paper of Elad & Hel-Or 2001 provided an adequate mathematical justification for the Shift and Add method for the simple case of an additive Gaussian noise model. In this paper we prove that additive Gaussian distribution is not a proper model for super-resolution noise. Specifically, we show that L_p norm minimization (1 ≤ p ≤ 2) results in a pixelwise weighted mean algorithm which requires the least possible amount of computation time and memory and produces a maximum likelihood solution. We also justify the use of a robust prior information term based on bilateral filter idea. Finally, for the underdetermined case, where the number of non-redundant low-resolution frames are less than square of the resolution enhancement factor, we propose a method for detection and removal of outlier pixels. Our experiments using commercial digital cameras show that our proposed super-resolution method provides significant improvements in both accuracy and efficiency.
机译:在过去的二十年中,已经发表了许多论文,提出了多种提高多帧分辨率的方法。这些方法具有广泛的复杂性,内存和时间要求,通常对它们假定的数据和噪声模型非常敏感,通常会限制其实用性。非迭代Shift和Add概念的不同实现已被提出为非常快速和有效的超分辨率算法。 Elad&Hel-Or 2001的论文为加性高斯噪声模型的简单情况提供了Shift and Add方法的充分数学证明。在本文中,我们证明加性高斯分布不是超分辨率噪声的合适模型。具体而言,我们表明L_p范数最小化(1≤p≤2)导致了像素级加权平均算法,该算法需要最少的计算时间和内存,并产生最大似然解。我们还根据双边过滤器思想证明了使用可靠的先验信息项的合理性。最后,对于不确定情况,其中非冗余低分辨率帧的数量小于分辨率增强因子的平方,我们提出了一种检测和去除异常像素的方法。我们使用商用数码相机进行的实验表明,我们提出的超分辨率方法在准确性和效率上都提供了显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号