首页> 外文会议>Annual International Conference on Network and Information Systems for Computers >Anomaly Detection in Network Management System Based on Isolation Forest
【24h】

Anomaly Detection in Network Management System Based on Isolation Forest

机译:基于隔离林的网络管理系统中的异常检测

获取原文

摘要

As an important part in network management system, rapid and accurate anomaly detection is one of the preconditions to guarantee the effective work of the network. In general, the network management system will monitor the data of multiple indicators, and the manifestations of network anomalies are complex in the data. Most existing anomaly detection approaches have encountered some trouble in network anomaly detection because of the periodicity of time series data or high time complexity and memory cost working on high-dimensional data. Aiming at the deficiency of present methods of network anomaly detection, we propose an adapted method based on iForest algorithm. We construct some feature extractors through statistical methods to highlight different abnormal behaviors in different indicator and then use the extracted feature data for the construction and prediction of iForest. Combining specific feature extractors, we can eliminate the effects of periodicity, or specify the detection of peaks or troughs to adapt to different indicators. By means of iForest algorithm which has linear time complexity and low memory requirement, our method makes a rapid detection with large dataset and works well in high dimensional network management data.
机译:快速,准确的异常检测作为网络管理系统的重要组成部分,是保证网络有效工作的前提之一。通常,网络管理系统将监视多个指标的数据,并且数据中网络异常的表现很复杂。由于时间序列数据的周期性或高时间复杂度以及在高维数据上的存储成本,大多数现有的异常检测方法在网络异常检测中都遇到了一些麻烦。针对目前网络异常检测方法的不足,提出一种基于iForest算法的自适应方法。我们通过统计方法构造一些​​特征提取器,以突出显示不同指标中的不同异常行为,然后将提取的特征数据用于iForest的构建和预测。结合特定的特征提取器,我们可以消除周期性的影响,或者指定检测峰或谷以适应不同的指标。通过具有线性时间复杂度和低内存需求的iForest算法,我们的方法可以对大型数据集进行快速检测,并且在高维网络管理数据中也能很好地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号