【24h】

Generalization in Clustering with Unobserved Features

机译:具有不可观察特征的聚类中的泛化

获取原文
获取原文并翻译 | 示例

摘要

We argue that when objects are characterized by many attributes, clustering them on the basis of a relatively small random subset of these attributes can capture information on the unobserved attributes as well. Moreover, we show that under mild technical conditions, clustering the objects on the basis of such a random subset performs almost as well as clustering with the full attribute set. We prove a finite sample generalization theorems for this novel learning scheme that extends analogous results from the supervised learning setting. The scheme is demonstrated for collaborative filtering of users with movies rating as attributes.
机译:我们认为,当对象具有许多属性时,基于这些属性的相对较小的随机子集将它们聚类也可以捕获未观察到的属性上的信息。此外,我们表明,在温和的技术条件下,基于此类随机子集对对象进行聚类的效果几乎与对完整属性集进行聚类的效果一样。我们证明了这种新颖的学习方案的有限样本泛化定理,该定理推广了有监督学习环境下的类似结果。演示了该方案用于以电影评级为属性的用户的协同过滤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号