首页> 外文会议>Annual Conference on Towards Autonomous Robotic Systems >A Self-organizing Network with Varying Density Structure for Characterizing Sensorimotor Transformations in Robotic Systems
【24h】

A Self-organizing Network with Varying Density Structure for Characterizing Sensorimotor Transformations in Robotic Systems

机译:具有变化密度结构的自组织网络,用于表征机器人系统中的感觉运动转换

获取原文

摘要

In this work, we present the development of a neuro-inspired approach for characterizing sensorimotor relations in robotic systems. The proposed method has self-organizing and associative properties that enable it to autonomously obtain these relations without any prior knowledge of either the motor (e.g. mechanical structure) or perceptual (e.g. sensor calibration) models. Self-organizing topographic properties are used to build both sensory and motor maps, then the associative properties rule the stability and accuracy of the emerging connections between these maps. Compared to previous works, our method introduces a new varying density self-organizing map (VDSOM) that controls the concentration of nodes in regions with large transformation errors without affecting much the computational time. A distortion metric is measured to achieve a self-tuning sensorimotor model that adapts to changes in either motor or sensory models. The obtained sensorimotor maps prove to have less error than conventional self-organizing methods and potential for further development.
机译:在这项工作中,我们介绍了一种神经启发性方法的发展,该方法用于表征机器人系统中的感觉运动关系。所提出的方法具有自组织和关联的特性,使其能够自动获得这些关系,而无需对电动机(例如,机械结构)或感知(例如,传感器校准)模型有任何先验知识。自组织的地形属性用于构建感官地图和运动地图,然后关联属性控制这些地图之间新兴连接的稳定性和准确性。与以前的工作相比,我们的方法引入了一种新的可变密度自组织图(VDSOM),该图可以控制具有较大变换误差的区域中节点的集中度,而不会影响太多的计算时间。测量失真度量以实现适应电动机或感官模型变化的自调整感官电动机模型。与传统的自组织方法相比,所获得的感觉运动图被证明具有较小的误差,并且具有进一步开发的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号